1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
use std::{
convert::TryInto,
num::NonZeroUsize,
};
use rand::{ thread_rng, Rng, distributions::Uniform };
use serde::Serialize;
const HIDDEN_BIT: u8 = 1 << 7;
pub const FLAGGED_BIT: u8 = 1 << 6;
const CORRECT_BIT: u8 = 1 << 5; // grading for a rightly flagged mine
// all the bits that aren't flags
const TILE_NUMBITS: u8 = !(HIDDEN_BIT | FLAGGED_BIT | CORRECT_BIT);
const MINED: u8 = HIDDEN_BIT | TILE_NUMBITS;
const NEIGH_OFFS: &[(isize,isize)] = &[
(-1,-1),(0,-1),(1,-1),
(-1, 0), (1, 0),
(-1, 1),(0, 1),(1, 1),
];
#[derive(PartialEq)]
pub enum Phase {
SafeFirstMove,
FirstMoveFail,
Run,
Die,
Win,
// Leave,
}
pub struct Game {
pub phase: Phase,
pub board: Board,
pub board_conf: BoardConf,
}
#[derive(Debug, Clone, Copy, Serialize)]
pub struct BoardConf {
pub w: NonZeroUsize,
pub h: NonZeroUsize,
/// mines/tiles, expressed as (numerator, denominator)
pub mine_ratio: (usize,NonZeroUsize),
pub always_safe_first_move: bool,
pub revealed_borders: bool,
}
impl std::fmt::Display for BoardConf {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}x{} {}/{}", self.w, self.h, self.mine_ratio.0, self.mine_ratio.1)
}
}
pub struct Board {
pub data: Vec<u8>,
pub width: NonZeroUsize,
pub height: NonZeroUsize,
pub hidden_tiles: usize,
pub mine_count: usize,
}
#[derive(Debug)]
pub enum MoveType {
Reveal,
ToggleFlag,
}
#[derive(Debug)]
pub struct Move {
pub t: MoveType,
pub pos: (usize,usize),
}
pub struct MoveResult(pub Board, pub bool);
impl Game {
pub fn new(conf: BoardConf) -> Self {
let board = Board::new(conf);
Game {
phase: if conf.always_safe_first_move { Phase::SafeFirstMove } else { Phase::Run },
board,
board_conf: conf
}
}
pub fn act(mut self, m: Move) -> Self {
let lost_phase = | phase | {
match phase {
Phase::SafeFirstMove => Phase::FirstMoveFail,
Phase::Run => Phase::Die,
_ => unreachable!(),
}
};
match m.t {
MoveType::Reveal => {
let kaboom: bool;
self.board = {
let mr = self.board.reveal(m.pos);
kaboom = mr.1;
mr.0
};
if kaboom { self.phase = lost_phase(self.phase) }
if self.phase == Phase::SafeFirstMove { self.phase = Phase::Run }
},
MoveType::ToggleFlag => self.board = self.board.flag(m.pos).0,
};
if self.phase == Phase::FirstMoveFail {
let winnable = self.board.mine_count < (self.board.width.get() * self.board.height.get());
if winnable {
self.board.hidden_tiles += 1;
self.board.move_mine_elsewhere(m.pos);
self.phase = Phase::Run;
self = self.act(m);
} else {
self.phase = Phase::Die;
}
} else if self.phase != Phase::Die && self.board.hidden_tiles == self.board.mine_count {
self.phase = Phase::Win;
}
self
}
}
impl Board {
pub fn new(mut conf: BoardConf) -> Self {
let (w,h) = (conf.w,conf.h);
let area = w.get()*h.get();
if w.get() < 3 || h.get() < 3 { conf.revealed_borders = false; }
let mined_area = area - if conf.revealed_borders { 2*(w.get()-1) + 2*(h.get()-1) } else { 0 };
let mine_count = ((conf.mine_ratio.0 * mined_area) / conf.mine_ratio.1.get()).clamp(0, mined_area);
let b = Board {
data: [HIDDEN_BIT].repeat(area),
width: w,
height: h,
hidden_tiles: area,
mine_count,
};
if conf.revealed_borders {
let (w,h) = (w.get(),h.get());
let mut b = b.spread_mines(mine_count, true);
for x in 0..w {
b = b.reveal((x, 0)).0;
b = b.reveal((x, h-1)).0;
}
for y in 1..h-1 {
b = b.reveal(( 0, y)).0;
b = b.reveal((w-1, y)).0;
}
b
} else { b.spread_mines(mine_count, false) }
}
pub fn spread_mines(mut self, mut count: usize, without_edges: bool) -> Self {
let mut rng = thread_rng();
let w = self.width.get();
let h = self.height.get();
let (wr,hr) = if without_edges { ((1,w-1),(1,h-1)) } else { ((0,w),(0,h)) };
while count > 0 {
let randpos: (usize, usize) = (rng.sample(Uniform::new(wr.0, wr.1)), rng.sample(Uniform::new(hr.0, hr.1)));
let o = self.pos_to_off_unchecked(randpos);
if self.data[o] == MINED { continue }
else {
self.data[o] = MINED;
count -= 1;
let minepos = pos_u2i(randpos).unwrap();
self.map_neighs(minepos, |neigh| {
if neigh != MINED {
neigh + 1
} else { neigh }
});
}
}
self
}
fn neighs<T>(&self, pos: (T,T)) -> Option<Vec<(usize,usize)>>
where T: TryInto<isize>
{
if let (Ok(ox),Ok(oy)) = (pos.0.try_into(),pos.1.try_into()) {
Some(NEIGH_OFFS
.iter()
.map(|(x,y)| (*x + ox, *y + oy)).filter_map(|p| self.bounded(p))
.collect())
} else {
None
}
}
fn map_neighs<T>(&mut self, pos: (T,T), mut f: impl FnMut(u8) -> u8) where T: TryInto<isize> {
if let Some(neighs) = self.neighs(pos) {
let npos = neighs.iter().filter_map(|pos| self.pos_to_off(*pos)).collect::<Vec<usize>>();
npos.iter().for_each(|o| {
self.data[*o] = f(self.data[*o]);
});
}
}
pub fn pos_to_off(&self, pos: (usize,usize)) -> Option<usize>
{
self.bounded(pos).map(|x| self.pos_to_off_unchecked(x))
}
pub fn pos_to_off_unchecked(&self, pos: (usize, usize)) -> usize {
pos.0 + pos.1 * self.width.get()
}
pub fn bounded<T>(&self, pos: (T,T)) -> Option<(usize, usize)>
where T: TryInto<usize>
{
if let (Ok(x),Ok(y)) = (
pos.0.try_into(),
pos.1.try_into(),
) {
(x < self.width.get() && y < self.height.get()).then(|| (x,y))
} else { None }
}
pub fn flood_reveal(&mut self, pos: (usize,usize)) {
let mut queue = vec![pos];
while let Some(pos) = queue.pop() {
if let Some(off) = self.pos_to_off(pos) {
let c = &mut self.data[off];
if *c & HIDDEN_BIT > 0 {
*c &= !(HIDDEN_BIT | FLAGGED_BIT);
self.hidden_tiles -= 1;
if *c > 0 { continue; }
if let Some(mut adj) = self.neighs(pos) {
queue.append(&mut adj);
}
}
}
}
}
pub fn reveal(mut self, pos: (usize,usize)) -> MoveResult {
if let Some(off) = self.pos_to_off(pos) {
self.flood_reveal(pos);
let c = self.data[off];
MoveResult(self, (c & !(FLAGGED_BIT | CORRECT_BIT)) == TILE_NUMBITS)
} else {
MoveResult(self, false)
}
}
pub fn grade(mut self) -> Board {
for i in &mut self.data {
if *i == TILE_NUMBITS | FLAGGED_BIT | HIDDEN_BIT {
*i |= CORRECT_BIT;
}
}
self
}
pub fn flag(mut self, pos: (usize,usize)) -> MoveResult {
if let Some(off) = self.pos_to_off(pos) {
self.data[off] ^= FLAGGED_BIT;
}
MoveResult(self, false)
}
pub fn render(&self) -> Vec<u8> {
let mut ret = vec![];
for y in 0..self.height.get() {
for x in 0..self.width.get() {
let c = &self.data[self.pos_to_off_unchecked((x,y))];
match *c {
0 => ret.push(b' '),
_ if *c <= 8 => ret.push(b'0' + c),
_ if (*c & CORRECT_BIT) > 0 => ret.push(b'C'),
_ if (*c & FLAGGED_BIT) > 0 => ret.push(b'F'),
_ if (*c & HIDDEN_BIT) > 0 => ret.push(b'#'),
_ if *c == TILE_NUMBITS => ret.push(b'O'),
_ => ret.push(b'?'),
}
}
ret.extend_from_slice(b"<br>");
}
ret
}
pub fn move_mine_elsewhere(&mut self, pos: (usize, usize)) {
let mut surround_count = 0;
self.map_neighs(pos, |val| {
if (val & !FLAGGED_BIT) == MINED {
surround_count += 1;
val
} else {
val - 1
}});
let off = self.pos_to_off(pos).unwrap();
let vacant_pos = {
let v = self.data.iter()
.enumerate()
.filter(|(_,val)| (*val & TILE_NUMBITS) != TILE_NUMBITS)
.map(|(p,_)| p)
.next()
.unwrap(); // there must be at least one
(v%self.width.get(), v/self.width.get())
};
let voff = self.pos_to_off_unchecked(vacant_pos);
debug_assert!(voff != off, "swapped mine to the same position in a FirstMoveFail/grace'd first move (???)");
{ // swap 'em (keep these together, pls kthnx (bugs were had))
self.data[voff] |= MINED;
self.data[off] = surround_count;
}
self.map_neighs(vacant_pos, |val| {
if (val & !FLAGGED_BIT) == MINED { val } else { val + 1 }
});
}
}
fn pos_u2i(pos: (usize, usize)) -> Option<(isize, isize)> {
if let (Ok(x),Ok(y)) = (pos.0.try_into(), pos.1.try_into())
{ Some((x,y)) } else { None }
}
|